AgentVault Use Cases & Scenarios¶
The core AgentVault Vision is to enable a future where diverse AI agents can collaborate securely and effectively. This page provides concrete examples of complex workflows made possible or significantly easier by the AgentVault ecosystem and its foundational components.
These scenarios illustrate how features like standardized discovery (Registry), secure interoperable communication (A2A Profile), robust authentication (Auth Schemes & KeyManager), and developer tooling (SDKs, Library) come together to create powerful, automated solutions.
Scenario 1: Hyper-Personalized Concierge & Life Management¶
Goal: An AI personal assistant that proactively manages complex tasks like travel planning by securely coordinating multiple specialized agents based on deep user preferences stored securely.
Workflow:
- User Request: User asks their primary Orchestrator Agent to plan a trip with specific constraints (destination, budget, preferences).
- Secure Context: Orchestrator authenticates (e.g., OAuth2) with the user's Profile Agent (running in a TEE) to retrieve relevant, scoped preferences.
- Discovery: Orchestrator queries the AgentVault Registry for agents capable of
flights
,hotels
,activity-booking
,reviews
. - Task Delegation: Orchestrator tasks discovered agents (
FlightSearchAgent
,HotelSearchAgent
, etc.) via the A2A protocol. Authentication (e.g., API Key via KeyManager) is used for premium or booking agents. - Results & Synthesis: Agents return results (potentially streaming via SSE). Orchestrator synthesizes options.
- Action: Upon user confirmation, Orchestrator securely instructs booking agents via A2A to finalize reservations.
Diagram:
flowchart TD
subgraph UserInteraction["User Interaction"]
User(("👤 User"))
Orchestrator[/"🧠 OrchestratorAgent"/]
end
subgraph SecureProfile["Secure User Profile"]
ProfileAgent[("👤 Profile Agent(TEE)")]
end
subgraph AgentDiscovery["Agent Discovery"]
Registry["📚 Registry"]
FlightAgent["✈️ Flight SearchAgent"]
HotelAgent["🏨 Hotel SearchAgent"]
BookingAgent{"🔐 Booking Agent(Auth Required)"}
end
User --> Orchestrator
Orchestrator --> User
Orchestrator <--> ProfileAgent
Orchestrator <--> Registry
Orchestrator <--> FlightAgent
Orchestrator <--> HotelAgent
Orchestrator <--> BookingAgent
style Orchestrator fill:#ff9e80,stroke:#ff6e40,color:black
style Registry fill:#80d8ff,stroke:#40c4ff,color:black
style ProfileAgent fill:#ea80fc,stroke:#e040fb,color:black
style FlightAgent fill:#b9f6ca,stroke:#69f0ae,color:black
style HotelAgent fill:#b9f6ca,stroke:#69f0ae,color:black
style BookingAgent fill:#84ffff,stroke:#18ffff,color:black
style User fill:#fff59d,stroke:#ffee58,color:black
AgentVault Value:
- Discovery: Dynamically finds specialized travel agents.
- Interoperability: Standard A2A ensures communication between diverse agents.
- Security: Manages authentication for profile access and booking actions via KeyManager & Auth Schemes. TEE declaration enhances trust.
Scenario 2: Automated Scientific Discovery Pipeline¶
Goal: Accelerate research by automating the process of finding relevant studies, extracting key data, running complex simulations (potentially on secure hardware), analyzing results, and drafting reports.
Workflow:
- Setup: Researcher configures a Pipeline Orchestrator Agent.
- Literature Search: Orchestrator discovers (
Registry
) and tasks (A2A
)PubMedSearchAgent
/ArXivSearchAgent
. - Information Extraction: Orchestrator tasks
PDFDataExtractionAgent
with URLs from search results. Agent returns structured data Artifacts. - Simulation: Orchestrator discovers
ProteinFoldingSimAgent
(declaring TEE support) via Registry. Tasks agent via A2A with input data artifacts. - Analysis: Orchestrator tasks
BioStatAnalysisAgent
with simulation result artifacts. - Report Generation: Orchestrator sends components to
DraftWriterAgent
.
Diagram:
flowchart LR
Researcher(("👩🔬 Researcher"))
Orchestrator[/"🧠 PipelineOrchestrator"/]
Registry(("📚 Registry"))
subgraph Research["Research & Analysis Pipeline"]
direction TB
SearchAgent["🔎 LiteratureSearch Agent"]
Extractor["📄 PDF ExtractAgent"]
Simulator["⚙️ SimulationAgent (TEE)"]
Analyzer["📊 AnalysisAgent"]
Writer["📝 Draft WriterAgent"]
end
Researcher <--> Orchestrator
Orchestrator <--> Registry
Orchestrator <--> SearchAgent
Orchestrator <--> Extractor
Orchestrator <--> Simulator
Orchestrator <--> Analyzer
Orchestrator <--> Writer
style Researcher fill:#fff59d,stroke:#ffee58,color:black
style Orchestrator fill:#ff9e80,stroke:#ff6e40,color:black
style Registry fill:#80d8ff,stroke:#40c4ff,color:black
style SearchAgent fill:#b9f6ca,stroke:#69f0ae,color:black
style Extractor fill:#b9f6ca,stroke:#69f0ae,color:black
style Simulator fill:#ea80fc,stroke:#e040fb,color:black
style Analyzer fill:#b9f6ca,stroke:#69f0ae,color:black
style Writer fill:#b9f6ca,stroke:#69f0ae,color:black
AgentVault Value:
- Discovery: Finds specialized scientific agents, including filtering by TEE capability.
- Interoperability: Standard A2A allows complex pipeline construction.
- Artifacts: Enables exchange of large/complex data (simulation inputs/outputs).
- TEE Declaration: Allows secure compute agents to advertise their status.
Scenario 3: Decentralized Smart Factory Monitoring & Control¶
Goal: Monitor and control factory floor equipment from various vendors in a resilient way, reducing reliance on a single central cloud and enabling faster local responses.
Workflow:
- Local Deployment: Device Agents (wrapping sensors/actuators) register with a local AgentVault Registry.
- Monitoring: A local Monitoring Agent discovers Device Agents via Registry and subscribes to data streams (
tasks/sendSubscribe
via SSE). - Alerting: Monitoring Agent detects an anomaly, finds an
AlertingAgent
via Registry, and sends an alert message via A2A. - Response: Alerting Agent notifies humans and tasks a
ControlAgent
(or specific Device Agent) via A2A using required Auth Scheme (e.g.,apiKey
) managed byKeyManager
.
Diagram:
flowchart TD
subgraph FactoryFloor["Factory Floor Edge"]
SensorAgent[("🌡️ TemperatureSensor Agent")]
ActuatorAgent{"🔧 Valve Actuator(Auth Required)"}
MachineAgent[("⚙️ Machine StatusAgent")]
end
subgraph ControlNetwork["Local Control Network"]
LocalRegistry[("📚 Local Registry")]
MonitorAgent[/"👁️ MonitoringAgent"/]
AlertAgent[/"🚨 AlertingAgent"/]
ControlAgent[/"🎮 ControlAgent"/]
Supervisor(("👨💼 HumanSupervisor"))
end
%% Registration connections
SensorAgent --> LocalRegistry
ActuatorAgent --> LocalRegistry
MachineAgent --> LocalRegistry
AlertAgent --> LocalRegistry
ControlAgent --> LocalRegistry
%% Monitoring flow
MonitorAgent --> LocalRegistry
SensorAgent --> MonitorAgent
MachineAgent --> MonitorAgent
%% Alert flow
MonitorAgent --> AlertAgent
AlertAgent --> Supervisor
AlertAgent --> ControlAgent
ControlAgent --> ActuatorAgent
style SensorAgent fill:#b9f6ca,stroke:#69f0ae,color:black
style ActuatorAgent fill:#84ffff,stroke:#18ffff,color:black
style MachineAgent fill:#b9f6ca,stroke:#69f0ae,color:black
style LocalRegistry fill:#80d8ff,stroke:#40c4ff,color:black
style MonitorAgent fill:#ff9e80,stroke:#ff6e40,color:black
style AlertAgent fill:#ff9e80,stroke:#ff6e40,color:black
style ControlAgent fill:#ff9e80,stroke:#ff6e40,color:black
style Supervisor fill:#fff59d,stroke:#ffee58,color:black
AgentVault Value:
- Decentralization: Enables local discovery and communication via a local Registry.
- Interoperability: Standard A2A connects heterogeneous devices/agents.
- Real-time Data: SSE facilitates efficient monitoring streams.
- Security: Secures control commands locally via Auth Schemes & KeyManager.
Scenario 4: Automated CRM Lead Enrichment¶
Goal: Automatically enrich new CRM leads with verified external data (LinkedIn, company info, contact validation) to accelerate sales qualification and improve data quality.
Workflow:
- Trigger: A new lead is created in the CRM.
- Orchestration: A CRM Orchestrator Agent is triggered.
- Discovery: Orchestrator queries the AgentVault Registry for agents tagged
enrichment
,linkedin
,firmographics
,validation
. - Task Delegation (A2A): Orchestrator tasks the discovered agents (
LinkedIn Enricher
,Firmographics Agent
,Contact Validator
) via A2A, using appropriate authentication (API Keys viaKeyManager
) for premium data sources. - Data Aggregation: Orchestrator receives structured results (profile URLs, company size, email validity) potentially as Artifacts or direct results.
- CRM Update: Orchestrator updates the lead record in the CRM with the enriched data.
Diagram:
flowchart TD
subgraph CRMSystem["CRM System"]
User(("👩💼 Sales Rep"))
CRM[("📊 CRM Platform")]
Trigger[/"🔔 Webhook/Trigger"/]
end
subgraph AgentNetwork["Agent Network"]
Orchestrator[/"🧠 CRM OrchestratorAgent"/]
Registry["📚 Registry"]
subgraph EnrichmentServices["Enrichment Services"]
direction LR
LinkedInAgent{"🔗 LinkedIn Enricher(Auth Required)"}
FirmographicsAgent{"🏢 Firmographics(Auth Required)"}
ValidatorAgent["✓ ContactValidator"]
end
end
User --> CRM
CRM --> Trigger
Trigger --> Orchestrator
Orchestrator <--> Registry
Orchestrator <--> LinkedInAgent
Orchestrator <--> FirmographicsAgent
Orchestrator <--> ValidatorAgent
Orchestrator --> CRM
style User fill:#fff59d,stroke:#ffee58,color:black
style CRM fill:#bbdefb,stroke:#64b5f6,color:black
style Trigger fill:#ffcc80,stroke:#ffa726,color:black
style Orchestrator fill:#ff9e80,stroke:#ff6e40,color:black
style Registry fill:#80d8ff,stroke:#40c4ff,color:black
style LinkedInAgent fill:#84ffff,stroke:#18ffff,color:black
style FirmographicsAgent fill:#84ffff,stroke:#18ffff,color:black
style ValidatorAgent fill:#b9f6ca,stroke:#69f0ae,color:black
AgentVault Value:
- Modularity: Easily find and swap enrichment agents via the Registry.
- Standardization: A2A protocol simplifies interaction with diverse data providers.
- Security: KeyManager handles API keys for premium enrichment services securely.
- Automation: Reduces manual data entry and improves lead quality efficiently.
Scenario 5: Automated Order Processing & Fulfillment (ERP Integration)¶
Goal: Streamline order fulfillment by automating inventory checks, shipping label generation, billing updates, and CRM notifications when a new order is placed.
Workflow:
- Trigger: New order received in E-commerce Platform.
- Orchestration: Order Processing Agent is triggered.
- Inventory Check (A2A): Orchestrator tasks
Inventory Agent
(connected to ERP/WMS) via A2A. - Shipping Label (A2A + Auth): If stock confirmed, Orchestrator discovers (
Registry
) and tasksShipping Label Agent
(e.g., ShipStation, EasyPost wrapper) using required API Key (KeyManager
). Agent returns label data Artifact. - Billing (A2A): Orchestrator tasks
Billing Agent
to generate invoice in ERP/Accounting system. - CRM Update (A2A): Orchestrator tasks
CRM Update Agent
to log order status against customer record. - Notification: Orchestrator notifies E-commerce platform/user of completion.
Diagram:
flowchart TB
Ecommerce[("🛍️ E-commercePlatform")] --> OrderAgent[/"📦 Order ProcessingAgent"/]
subgraph Systems["Enterprise Systems"]
ERP[("💻 ERP / WMS")]
ShippingAPI[("🚚 Shipping API")]
CRM[("👥 CRM System")]
end
subgraph AgentNetwork["Agent Network"]
Registry[("📚 Registry")]
InventoryAgent["🔢 InventoryAgent"]
ShippingAgent{"🏷️ Shipping Label(Auth Required)"}
BillingAgent["💰 BillingAgent"]
CRMUpdateAgent["📝 CRM UpdateAgent"]
end
OrderAgent <--> Registry
OrderAgent <--> InventoryAgent
InventoryAgent <--> ERP
OrderAgent <--> ShippingAgent
ShippingAgent <--> ShippingAPI
OrderAgent <--> BillingAgent
BillingAgent <--> ERP
OrderAgent <--> CRMUpdateAgent
CRMUpdateAgent <--> CRM
OrderAgent --> Ecommerce
style Ecommerce fill:#bbdefb,stroke:#64b5f6,color:black
style OrderAgent fill:#ff9e80,stroke:#ff6e40,color:black
style Registry fill:#80d8ff,stroke:#40c4ff,color:black
style InventoryAgent fill:#b9f6ca,stroke:#69f0ae,color:black
style ShippingAgent fill:#84ffff,stroke:#18ffff,color:black
style BillingAgent fill:#b9f6ca,stroke:#69f0ae,color:black
style CRMUpdateAgent fill:#b9f6ca,stroke:#69f0ae,color:black
style ERP fill:#bbdefb,stroke:#64b5f6,color:black
style ShippingAPI fill:#bbdefb,stroke:#64b5f6,color:black
style CRM fill:#bbdefb,stroke:#64b5f6,color:black
AgentVault Value:
- Process Automation: Connects disparate systems (E-commerce, ERP, Shipping, CRM) via standardized agents.
- Interoperability: A2A allows communication between custom internal agents (Inventory, Billing) and external service wrappers (Shipping).
- Security: Securely manages API keys for external services like shipping providers.
- Flexibility: Easily replace the Shipping Label Agent if switching providers, without changing the Orchestrator significantly.
Scenario 6: Intelligent Customer Support Ticket Routing¶
Goal: Improve customer support efficiency by automatically analyzing incoming tickets, enriching them with context, and routing them to the best-suited queue or agent, potentially providing automated answers for common issues.
Workflow:
- Trigger: New support ticket created in Helpdesk System.
- Orchestration: Support Orchestrator Agent is triggered.
- Initial Analysis (A2A): Orchestrator tasks
SentimentAnalysisAgent
andTopicClassificationAgent
via A2A. - Context Enrichment (Discovery & A2A): Orchestrator discovers (
Registry
) and tasksCRMLookupAgent
(using auth viaKeyManager
) to fetch customer history/details based on ticket submitter's email. - Knowledge Base Check (A2A): Orchestrator tasks
KnowledgeBaseSearchAgent
with classified topic and ticket content. - Decision & Routing:
- If KB Agent finds a high-confidence answer, Orchestrator sends automated reply via
HelpdeskUpdateAgent
. - If no KB match, Orchestrator uses sentiment, topic, and customer context to task
RoutingAgent
to assign the ticket to the appropriate human support queue (e.g., Tier 1, Billing, Technical) viaHelpdeskUpdateAgent
.
- If KB Agent finds a high-confidence answer, Orchestrator sends automated reply via
Diagram:
flowchart LR
User(("👤 User")) --> Helpdesk[("🎫 HelpdeskSystem")]
Helpdesk --> Orchestrator[/"🧠 SupportOrchestrator"/]
subgraph AgentNetwork["Agent Ecosystem"]
Registry["📚 Registry"]
subgraph Analysis["Analysis Agents"]
direction TB
SentimentAgent["😊 SentimentAnalysis"]
TopicAgent["🏷️ TopicClassification"]
CRMAgent{"👥 CRM Lookup(Auth Required)"}
end
subgraph Resolution["Resolution Path"]
direction TB
KBAgent["📚 Knowledge BaseAgent"]
RoutingAgent["🔀 Routing LogicAgent"]
HelpdeskUpdateAgent{"✏️ Helpdesk Update(Auth Required)"}
end
end
Orchestrator <--> Registry
Orchestrator <--> SentimentAgent
Orchestrator <--> TopicAgent
Orchestrator <--> CRMAgent
Orchestrator <--> KBAgent
Orchestrator <--> RoutingAgent
Orchestrator <--> HelpdeskUpdateAgent
HelpdeskUpdateAgent --> Helpdesk
style User fill:#fff59d,stroke:#ffee58,color:black
style Helpdesk fill:#bbdefb,stroke:#64b5f6,color:black
style Orchestrator fill:#ff9e80,stroke:#ff6e40,color:black
style Registry fill:#80d8ff,stroke:#40c4ff,color:black
style SentimentAgent fill:#b9f6ca,stroke:#69f0ae,color:black
style TopicAgent fill:#b9f6ca,stroke:#69f0ae,color:black
style CRMAgent fill:#84ffff,stroke:#18ffff,color:black
style KBAgent fill:#b9f6ca,stroke:#69f0ae,color:black
style RoutingAgent fill:#b9f6ca,stroke:#69f0ae,color:black
style HelpdeskUpdateAgent fill:#84ffff,stroke:#18ffff,color:black
AgentVault Value:
- Workflow Orchestration: Enables complex, multi-step support workflows involving analysis, enrichment, and action.
- Specialization: Allows using best-of-breed agents for sentiment, classification, KB search, etc.
- Secure Data Access: Protects access to CRM and Helpdesk systems via authenticated agents.
- Efficiency: Automates common tasks and routes complex issues effectively, reducing manual triage and resolution time.